

Lashing For Cargo Transportation Onshore

Mutadi^{1*}

¹ Lecturer in Engineering Faculty, UniversitasTujuhBelasAgustus 45 Cirebon, JalanPerjuangan West Java 45135, Indonesia

*Corresponding Author

Date of Submission: 24-02-2024	Date of Acceptance: 05-04-2024

Abstract

Abstract. Lashing for cargo securing transportation onshore is to secure the heavy module GTC Gas Turbine Compressore module P1 and module S1 during transported by using trailer SPMT Self Propelled Module Transporter is safely. The analysis of lashing should consider for the transverse force in turning condition, Longitodinal force in breaking and acceleration condition. The weight of P1 is 511.48 mt metric ton and S1 429.18 mt metric ton will transported by SPMT with 20 axle, has speed 0.5 km/h and acceleration 0.07 m/s², time taken to accelerate is 2 s. The environment condition is the wind speed is 10 m/s. The capacity of lashing is 5 mt. The result from the site activity of the transportation of Module P1 and S1 with using SPMT is successfuly and safely. The module P1 has the total transverse securing force 66.72 greater than total transverse sliding force 17.7, the longitudinal securing force 85.12 is greater than total longitudinal sliding force 20.05 mt. The module S1 has the total transverse securing force is 45.30 greater than total transverse sliding force 15.37 mt, and total longitudinal securing force 62.7 mtgreater than total longitudinal sliding force 17.02 mt.

Keywords: lashing, Transverse, Longitudinal, SPMT.

I. INTRODUCTION

The content of this document forms the Lashing [2] for Cargo Transportation Onshore for the Heavy Module GTC Gas Turbine Compressor. Its weight is 511 ton, it will be transported by using SPMT Self Propelled Modular Transporter.

The aim of this document is to provide an overview on the proposed concept of handling to enable the safe and smooth transportation of the cargo. Details of the cargo are stated in this document.

Lashing analysis [1] of the transportation is included in this document. All relevant studies have been performed for the cargo transportation for the above-mentioned analysi

This report summarises the acceleration results caused by the motion of the trailer with cargo during transportation. The analysis is to ensure that the lashing is adequate to resist the accelerations during the transportation.

II. METHODE OF RESEARCH

The method used is to compare the analysis calculations with the facts in the project field. The results of the calculations are applied in the project field to ensure that the results of the Hirungan are safely used for project work in the fiel This document [4] is to provide a plan for the transportation of the GTC Gas Turbine Compressor withSPMT Self Propelled Module Transporter. The Module that will be transported are two piecies, namely GTC P1 and GTC S1.

This document will clarify the various phases and steps of the transportation wich is scured by lashing. It should be demonstrated that lashing for transportation in accordance with code and specification will not impart overload or cause damage to the lashing system.

This document will provide confirmation that the transportation will be a controlled operation leading to an as lashing system comparable to the approved design and that sufficient means of inspection, measurement and recording are performed to confirm the actual lashing configuration.

2.1 Prototype and Instrumentation

The transportation plan with the lashing arrangement can be seen in fugure Figure 1, 2.3,4,5 and Table 1,2,3,4 and 5

International Journal of Engineering, Management and Humanities (IJEMH) Volume 5, Issue 2, Mar.-Apr., 2024 pp: 311-316 ISSN: 2584-2145 www.ijemh.com

Figure 1. Module P1 Lashing Plan

Figure 2. Module S1 Lashing Plan

Figure 3. SPMT

Figure 4. SPMT

Figure 5. Turning of Module P1 and S1

2.2 Lashing Calculation Module P1

5T lashings will be used to secure [2] the cargo in both transverse and longitudinal directions. Lashing calculation [3] is based on 2x20 axle lines SPMT. Proposed lashing arranggement as shawn in figure 6.

Figure 6. Lashing arrangement

The Cargo detail, cargo dimension, Trailer Detail, Road Inclination as shawn in Table 1.

Table 1. Cargo, Trailer, Road, Detail				
Description	Unit	Quantity		
Cargo E	Detail			
Weight	MT	511.48		
Lashing Capacity	MT	5		
Coeficient of friction		0.1		
Cargo Din	nension			
Length	m	30.80		
Width	m	14.42		
Height	m	11.57		
Trailer Deatail				
Type SPMT	EA	2		
No Axle Lines	EA	20		
Road Incl	ination			
Longitudinal Road	deg	1.72 Or 3		
Gradient		%		
Transverse Road	deg	1.72 or 3		
Gradient		%		

The Wind Force shawn in Table 2. ;

Table 2 . wind Force			
Unit	Quantity		
m/s	10		
Kg/m ³	1.228		
	Unit m/s Kg/m ³		

International Journal of Engineering, Management and Humanities (IJEMH) Volume 5, Issue 2, Mar.-Apr., 2024 pp: 311-316 ISSN: 2584-2145

www.ijemh.com

Longitudinal Wind Force	kN	10.24
Transverse Wind Force	kN	21.88

The acceleration force as Longitudinal direction shawn in Table 3;

Table 3. Acceleration Force

Descripti	on			Unit	Quantit
					у
Trailer Sp	beed			Km/	0.5
	-			h	
Time take	en to acce	lerate		S	2
Accelerat	tion			m/s^2	0.07
Sliding	Force	due	to	MT	3.65
accelerati	ion				
Sliding	Force	due	to	MT	15.35
inclinatio	n				
Longitud	inal Wind	Force		MT	1.05
Total Slic	ling Force	<u>,</u>		MT	20.05

The Lashing Arrangement as shawn in Table 4. **Table 4.** Lashing Arrangement

Description	Unit	Quantit
		у
Transverse plan angle, α	deg	13.3
Longitudinal plan angle, β	deg	58.0
Longitudinal Force Value, fx		0.85
Lashing number	EA	8
Lashing securing force	MT	34
Securing force due to friction	MT	51.12
Total Securing force	MT	85.12
Conclusion		SAFE

The Breaking Force as Longitudinal direction, as shawn in Table 5.

Table	5.	Breaking	Force
Labic	<i>J</i> •	Dicaking	1 0100

Descriptio	n			Unit	Quantit
					у
Trailer Sp	eed			Km/	0.5
				h	
Time take	n to acce	lerate		S	2
Accelerati	on			m/s^2	0.07
Sliding	Force	due	to	MT	3.65
acceleratio	on				
Sliding	Force	due	to	MT	15.35
inclination	ı				
Longitudi	nal Wind	Force		MT	1.05
Total Slid	ing Force)		MT	20.05

The Lashing Arrangement as shawn in Table 6.

Table 6. Lashing Arrangement

Description	Unit	Quantit
		у
Transverse plan angle, α	deg	13.3
Longitudinal plan angle, β	deg	58.0
Longitudinal Force Value, fx		0.85
Lashing number	EA	8
Lashing securing force	MT	34
Securing force due to friction	MT	51.12
Total Securing force	MT	85.12
Conclusion		SAFE

The Breaking Force as Transverse direction, as shawn in Table 7

 Table 7. Centrifugal Force

Description	Unit	Quantit
		у
Trailer Speed when turning	Km/	0.5
	h	
Turing radius	m	8.6
Centrifugal force	MT	0.12
Sliding Force due to	MT	15.35
inclination		
Transverse Wind Force	MT	2.23
Total Sliding Force	MT	17.70

The Lashing Arrangement as shawn in Table 8. **Table 8.** Lashing Arrangement

Description	Unit	Quantit
		у
Transverse plan angle, α	deg	13.5
Longitudinal plan angle, β	deg	68.1
Longitudinal Force Value, fx		0.39
Lashing number	EA	8
Lashing securing force	MT	15.6
Securing force due to friction	MT	51.1
Total Securing force	MT	66.7
Conclusion		SAFE

2.3 Lashing Calculation Module S1

5T lashings will be used to secure [2] the cargo in both transverse and longitudinal directions. Lashing calculation [3] is based on 2x20 axle lines SPMT. Proposed lashing arranggement as shawn in figure 7.

Figure 7. Lashing arrangement

The Cargo detail, cargo dimension, Trailer Detail, Road Inclination as shawn in Table 9.

Table 9. Cargo, Trailer, Road, Detail					
Description	Unit	Quantity			
Cargo	Detail				
Weight	MT	429.18			
Lashing Capacity	MT	5			
Coeficient of friction		0.1			
Cargo Di	mensior	1			
Length	m	31.42			
Width	m	14.00			
Height	m	12.12			
Trailer Deatail					
Type SPMT	EA	2			
No Axle Lines	EA	20			
Road Inclination					
Longitudinal Road	deg	1.72 Or 3 %			
Gradient					
Transverse Road	deg	1.72 or 3 %			
Gradient					

The Wind Force shawn in Table 10.; Table 10. Wind Force

Descrption	Unit	Quantity			
Wind Speed	m/s	10			
Mass Density of Air	Kg/m ³	1.228			
Longitudinal Wind	kN	10.42			
Force					
Transverse Wind	kN	23.39			
Force					

The acceleration force as Longitudinal direction shawn in Table 11;

	ruble 11. neceleration rolee				
Descripti	on			Unit	Quantit
					у
Trailer Sp	peed			Km/	0.5
				h	
Time take	en to acce	lerate		S	2
Accelerat	tion			m/s^2	0.07
Sliding	Force	due	to	MT	3.07
accelerati	ion				
Sliding	Force	due	to	MT	12.88
inclinatio	n				
Longitud	inal Wind	Force		MT	1.07
Total Slic	ling Force	;		MT	17.02

Table 12. Lashing Arrangement			
Description	Unit	Quantit	
		у	
Transverse plan angle, α	deg	5.3	
Longitudinal plan angle, β	deg	78.7	
Longitudinal Force Value, fx		0.99	
Lashing number	EA	4	
I 1 '	MT	10.00	

The Lashing Arrangement as shawn in Table 1	2
Table 12. Lashing Arrangement	

Description	Unit	Quantit
		у
Transverse plan angle, α	deg	5.3
Longitudinal plan angle, β	deg	78.7
Longitudinal Force Value, fx		0.99
Lashing number	EA	4
Lashing securing force	MT	19.80
Securing force due to friction	MT	42.90
Total Securing force	MT	62.7
Conclusion		SAFE

The Breaking Force as Longitudinal direction, as shawn in Table 13.

Description	Unit	Quantit
		у
Trailer Speed	Km/	0.5
	h	
Time taken to accelerate	s	2
Acceleration	m/s^2	0.07
Sliding Force due to	MT	3.07
acceleration		
Sliding Force due to	MT	17.88
inclination		
Longitudinal Wind Force	MT	1.07
Total Sliding Force	MT	17.02

Table 13. Breaking Force

The Lashing Arrangement as shawn in Table146. Table 14. Lashing Arrangement

	8	
Description	Unit	Quantit
		У
Transverse plan angle, α	deg	5.30
Longitudinal plan angle, β	deg	78.70
Longitudinal Force Value, fx		0.99
Lashing number	EA	4
Lashing securing force	MT	19.80
Securing force due to friction	MT	42.90
Total Securing force	MT	62.70
Conclusion		SAFE

The Breaking Force as Transverse direction, as shawn in Table 15

Table 15. Centrifugal Force

Description	Unit	Quantit
		у
Trailer Speed when turning	Km/	0.5
	h	
Turing radius	m	8.8
Centrifugal force	MT	0.10
Sliding Force due to	MT	12.88

www.ijemh.com

inclination		
Transverse Wind Force	MT	2.39
Total Sliding Force	MT	15.37

The Lashing Arrangement as shawn in Table 16. **Table 16**. Lashing Arrangement

Ŭ	0	
Description	Unit	Quantit
		у
Transverse plan angle, α	deg	4.6
Longitudinal plan angle, β	deg	84.1
Longitudinal Force Value, fx		0.12
Lashing number	EA	4
Lashing securing force	MT	2.4
Securing force due to friction	MT	42.90
Total Securing force	MT	45.3
Conclusion		SAFE

III. RESULT AND DISCUSSION 3.1 Lashing analysis of Module P1

The modul P1 has weitgh 511.48 ton can be secured with 8 pieces Sling with 5 ton capacity. The arrangement of lasing has transverse plan anggle 5.3 deg and longitudinal plan angle 58 deg. During traveling with SPMT with 5 km/h speed and acceleration 0.07 m/^saffected the total sliding force 17.7 MT,ton.and the total securing force 66.72 MT. The Conclusion is Safe.

Summary of forces for securing module Pi on trailer as shawn in Table 17.

 Table 17. Forces Securing Module P1

	Transvers	Longitudina	Longitudinal	
	e		(Acceleration	
	(Turning)	(Breaking))	
Total	66.72	85.12	85.12	
Secutin				
g				
Forces				
(MT)				
Total	17.7	20.05	20.05	
Sliding				
Forces				
(MT)				
Conclusion				
Total Transverse Securing Forces > Total Transver				
Sliding Fore (Safe)				
Total Longitudinal Securing Forces > Total				
Longitudinal Sliding Fore (Safe)				
Conclusio	on Safe			
				

Modul P1 Transported on Trailer SPMT onshore moving, shawn in Figure 8.

Figure 8. Modul P1 on SPMT

3.2 Lashing Analysis modul S1

The modul S1 has weitgh 429.18 ton can be secured with 4 pieces Sling with 5 ton capacity. The arrangement of lasing has transverse plan anggle 5.3 deg and longitudinal plan angle 78.7 deg. During traveling with SPMT with 5 km/h speed and acceleration 0.07 m/^s affected the total sliding force 15.37 MT,ton.and the total securing force 45.30 MT. The Conclusion is Safe.

Summary of forces for securing module Pi on trailer as shawn in Table 18.

Table 18			
	Transvers	Longitudina	Longitudinal
	e	1	(Acceleration
	(Turning)	(Breaking))
Total	45.30	62.70	62.70
Secutin			
g			
Forces			
(MT)			
Total	15.37	17.02	17.02
Sliding			
Forces			
(MT)			
Conclusion			
Total Transverse Securing Forces > Total Transver			

Total Transverse Securing Forces > Total TransverSliding Fore (Safe)Total LongitudinalSecuring Forces > Total

Longitudinal Sliding Fore (Safe) Conclusion Safe

Figure 8. Module S1 On SMPT

IV. CONCLUSIONS

1. Total Transverse Securing Forces > Total Transverse Sliding Fore , for turning condition it is Safe.

2. Total Longitudinal Securing Forces > Total Longitudinal Sliding Fore, for breaking condition, it is Safe.

3. Total Longitudinal Securing Forces > Total Longitudinal forces for accelaration condition it is Safe.

REFERENCES

- Marine operations and marine warranty DNVGL-ST-N001,1-2020, http://www.dnvgl.com/
- [2]. Code of Safe Practice for Cargo Stowage and Securing, International MaritimeOrganization, 2011
- [3]. Kusuma, Panji, 2008. AnalisisSistemLashingPada Ferry UntukKeselamatanTransportasi Laut. Jakarta : UI.
- [4]. Mutadi, (2023), Lashing for Cargo onshore.